Our Product
Aerowash
Aerowash is a service brought to you by EngiSeek Pty Ltd to model helicopter downwash.
What Is Aerowash ?
AeroWash is industry leading software for modelling rotor downwash for helicopters and drones, improving safety in public and private landing areas where excessive downwash may be hazardous to people or objects. With Aerowash, predicting downwash patterns for drones and helicopters in rural or urban areas is made simpler than ever before.
Our Products
Frequently Asked Questions
Rotor downwash is a commonly ignored phenomenon that occurs during helicopter hover in close proximity to a ground surface. It has the potential to cause significant damage to nearby vehicles and objects, as well as people. Figure 1 shows the impact of helicopter rotor downwash while hovering over water and while landing in a dusty environment.
There is limited guidance on maximum helicopter rotor downwash velocities. By calculating the downward force from the helicopter rotors, it has been assumed that the horizontal component causing a ground affect conservatively equal the vertical wind speed, as shown in Figure 2.
A variety of research has been undertaken in the United States of America by both the US Army regarding the ground effects of helicopter downwash. Helicopter downwash is most significantly influenced by the mass of the helicopter and the diameter of the helicopter rotor.
Modelling the impacts of helicopter downwash at final approach and take-off area (FATO) as well as hover-taxi locations can allow for better planning for helicopter operations. This can benefit both airport and helicopter operators by identifying ‘areas of significant wind velocity’ to improve safety and reduce the impacts on people and property.
A typical rule of thumb requires a distance of 2 to 3 times the rotor diameter, from the rotor hub to allow the downwash velocity to dissipate to acceptable levels. The calculated downwash velocities for a helicopter with a 22m rotor diameter with a mass of 13t and 18t is shown in Figure 3 where it can be seen that the 80km/h wind velocities are exceeded at up to 40m from the rotor diameter (this would require an 80m wide corridor).
JJ Ryan Consulting have developed a helicopter downwash model based on US Army and NASA research coupled with aeronautical engineering calculations for aerofoils.
The model ultimately produced a downwash velocity heat-map, as shown in Figure 4 to allow the impacts of helicopter downwash to be modelled for three conditions, specifically helicopter take-off, hovering and hover-taxiing.
In the future, JJ Ryan Consulting will conduct further research and analysis of the ground effects of rotor downwash. This will lead to better planning and design of FATO’s and hover taxi locations which will assist in improving aviation safety by allowing the impacts on people, buildings to be mitigated.
JJ Ryan Consulting’s model has limitations because it is based on theoretical calculations derived from aeronautical engineering formulas. In the future, JJ Ryan Consulting intends to undertake further testing with scale models and anemometers calibrate the model with our theoretical model. It should also be noted that the effects of cross-wind can also change (exacerbate or reduce) the impacts of the helicopter downwash in a particular direction.